Objective: I will test for equivalent ratios to determine proportional relationships.

Vocabulary

Equivalent Ratios: ratios, in fraction form, that are equivalent Ratios 5:2 and 10:4 are equivalent

$$
\text { because } \frac{5}{2}=\frac{10}{4} .
$$

Proportional Relationship: is a relationship between two equal ratios

Apples are sold in bags of 5 for $\$ 2$. To buy 20 apples, what would be the cost (C)?

$$
\frac{5 \text { apples }}{2 \text { dollars }}=\frac{20 \text { apples }}{C(\cos t)}
$$

Multiply the numerator and denominator by 4.
Cost = \$8

Apples	Cost $\mathbf{(\$)}$
5	2
0	8

Steps:

Testing for Equivalent Ratios:

1. Identify the form of the ratio.
2. Convert ratio pairs in the table to fractions (use the first quantity as the denominator).
3. Determine if the fractions are equivalent.
4. If equivalent, there is a proportional relationship.

Example \# 1	Example \# 2
Directions: Use equivalent fractions to answer the following.	
Determine whether any of the ratios below are proportional. What would happen if the second ratio were $\frac{7}{3}$? $\frac{28}{12}, \frac{5}{3} \text { and } \frac{14}{6}$ Solution: - Simplify all fractions to see if any of them are equivalent. - $\frac{28}{12}=\frac{7}{3}, \frac{5}{3}=\frac{5}{3}$, and $\frac{14}{6}=\frac{7}{3}$ - The fractions $\frac{28}{12}$ and $\frac{14}{6}$ are equivalent since they both simplify to $\frac{7}{3}$. - If the second ratio were $\frac{7}{3}$, then all three ratios would be proportional.	The table below gives the dimensions of two rectangular prisms. Are the prisms in proportion? What if Prism 2 were 20 cm long? Solution: - Simplify all fractions to see if equivalent. Length: $\frac{\text { Prism 2 }}{\text { Prism } 1}=\frac{24}{20}=\frac{6}{5}$ Width: $\frac{\text { Prism 2 }}{\text { Prism } 1}=\frac{18}{15}=\frac{6}{5}$ Height: $\frac{\text { Prism 2 }}{\text { Prism 1 }}=\frac{21}{17.5}=\frac{210}{175}=\frac{6}{5}$ - Since all ratios are equivalent fractions, the prisms are in proportion. - If Prism 2 were 20 cm long, then all the prisms would not be in proportion.

Directions: Use equivalent fractions to answer the following.

1. Determine whether the ratios below are proportional. What would happen if the second ratio were $\frac{15}{45}$?

$$
\frac{10}{30}, \frac{15}{20}, \text { and } \frac{7}{15}
$$

3. The table shows the height and base lengths of several right triangles. Which triangles, if any, are in proportion? What if Triangle A had a height of 7.5?

	Height	Base
Triangle A	6	3
Triangle B	10	4
Triangle C	2.5	1

2. Determine whether the ratios below are proportional. What would happen if the first ratio were $\frac{45}{90}$?

$$
\frac{10}{20}, \frac{15}{30}, \text { and } \frac{7}{14}
$$

4. The table shows the lengths and widths of several rectangles. Which of the rectangles, if any, are in proportion? What if Rectangle C had a length of 24 ?

	Length	Width
Rectangle A	20	15
Rectangle B	48	36
Rectangle C	21	18

Date:

Directions: Create equivalent fractions to answer the following.
5. The table shows the amount of money several people earned for working a certain number of hours. Is there a proportional relationship between the amount of money they earned and the number of hours they worked? What if Fred earned $\$ 210$ and Ned earned $\$ 315$?

	Hours	Earnings
Fred	10	$\$ 150$
Ted	12	$\$ 252$
Ned	15	$\$ 150$

6. The table shows the amount of money several people earned for working a certain number of hours. Is there a proportional relationship between the amount of money they earned and the number of hours they worked? How many hours are worked to earn $\$ 108$?

	Hours	Earnings
Lillie	10	$\$ 120$
Millie	7	$\$ 84$
Tillie	14	$\$ 168$

Explain the steps you used to solve problem number \qquad .

