Procedural Lesson

Grade $7 \cdot$ Unit $3 \cdot$ Lesson 12
MC: 7.RP.2cA

Problem of the Day

\square

Objective:

\qquad

Vocabulary

Constant of Proportionality: the factor multiplied by the x-value to get the corresponding y-value. The unit rate and constant of proportionality both represent the value of the ratio of $y: x$.

$$
y=k x
$$

k is the Constant of Proportionality

$$
k=\frac{y}{x}
$$

Proportional Equation:

$$
y=k x
$$

y is directly proportional to x
\boldsymbol{k} is the Constant of Proportionality

Notes

Steps:

1. Analyze the problem and determine the equation(s)

- If there are two equations - isolate the variable for both. If both equations have the same solution, the quantities are likely proportional.

2. Decide if the relationship is proportional.

- If yes, explain the relationship.
- If not, explain why it is not.

3. If proportional, write the unit rate in $y=k x$ form.

Directions: Determine if there is a proportional relationship. If so, write in $y=k x$ form.

1. Every month, Julia's cable bill is $\$ 57$. How much will Julia spend on cable in c months?
2. Felicity is 5 years old and Bridgette is 10 years old.

Directions: Determine if there is a proportional relationship. If so, write in $y=k x$ form.

1. Potatoes cost $\$ 11.25$ for 5 pounds. Would 9 pounds cost $\$ 20.25$?
2. It took 3 painters 18 hours to paint a house. The next house took 4 painters and 15 hours.

Directions: Determine if there is a proportional relationship. If so, write in $y=k x$ form.

1. An asteroid travels 1,076 miles in 2 minutes, and 3,497 miles in $6 \frac{1}{2}$ minutes.	2. A $\frac{1}{2}$ gallon of paint covers $30 \mathrm{ft}^{2}$. Then, $4 \frac{1}{4}$ gallons can cover $255 \mathrm{ft}^{2}$.
3. I bought 3 pairs of shoes for \$87. She bought 4	
pairs of shoes for $\$ 112$.	4. 5 cups can make $7 \frac{1}{4}$ pies. 8 cups can make $11 \frac{3}{5}$
pies.	

1. You can graph any proportional relationship in $y=k x$ form. How does the constant of proportionality, k, affect how the line looks? Use the graph below to explore.

2. Zack went to the supermarket to purchase items for a party. He bought 24 oz . of cheese which priced for $\$ 3.60$. Salsa was on sale for 4 bottles for $\$ 7.80$. Finally, chips were marked 5 bags for $\$ 9.45$. If Zack wants to buy 75 oz . of cheese, 10 bottles of salsa, and 12 bags of chips, how much will he have to pay?

Extension Activity

* MP1: Make sense of the problem and persevere in solving it.
* MP4: Apply mathematics in everyday life.

If $y=k x$ graphs are always straight lines, what would cause a curved line? Explore these relationships and discover a real-life situation where the line would curve. What would the equation look like?

Hint: think of extinction events, interest rates, decay or population explosions.

Reaching Consensus

*MP3: Do you agree or disagree with your classmate? Why or why not?

Student Presentations

*MP1: What steps in the process are you most confident about?
*MP6: Explain how you might show that your solution answers the problem.

Closure

Recap today's lesson with one or more of the following questions:
\MP3: How would you explain a proportional relationship to someone?
, MP4: What visual model can you use to determine a proportional relationship?
\square

