\qquad

Objective: I will find unit rates and solve proportional equations.

Vocabulary

Inverse Operations: operations that undo each other; the opposite operation

Isolate Variables: to get a variable alone on one side of the equation; use inverse operations to isolate variables

Steps:

1. Isolate each variable. Use inverse operations to find unit rate.
2. Label the x, y, and k in your unit rate equation.
3. Plug values into the equation.

Proportional Equation:

$$
y=k x
$$

y is directly proportional to x k is the Constant of Proportionality

Example \# 1

Example \# 2

Directions: Find the unit rate for both variables in $y=k x$ form. Solve for the given variable.

$$
4 a=8 b
$$

Unit rates:

If $b=3$, then $a=$?
If $a=7$, then $b=$?

Solution:

Since the value of a is double b, which also means b is half of a, if $b=3$, then $a=6$. If $a=7$, then $b=3 \frac{1}{2}$.

$$
\frac{2}{3} g=\frac{1}{5} h
$$

Unit rates:

$$
\begin{aligned}
& \text { If } h=5 \text {, then } g=\text { ? } \\
& \text { If } g=9, \text { then } h=?
\end{aligned}
$$

Solution:
Since the value of g is $\frac{3}{10}$ of h and h is $3 \frac{1}{3}$ times g, then if $h=5$, then $g=1 \frac{1}{2}$. If $g=9$, then $h=30$.

Directions: Find the unit rate for both variables in $y=k x$ form. Solve for the given variable.

1. $2 x=5 y$	2. $24 a=6 b$
Unit rates:	Unit rates:
If $x=3$, then $y=$?	If $a=6$, then $b=$?
If $y=12$, then $x=$?	If $b=10$, then $a=$?
3. 4 families $=12$ children	4. $\frac{3}{4} k=\frac{2}{5} c$
Unit rates:	Unit rates:
If families $=10$, then children $=$?	If $k=6$, then $c=$?
If children $=42$, then families $=$?	If $c=8$, then $k=$?
5. $6 b=4 \frac{1}{4} z$	6. $2 \frac{1}{3} p=1 \frac{1}{2} q$
Unit rates:	Unit rates:
If $b=15$, then $z=$?	If $p=25$, then $q=$?
If $z=20$, then $b=$?	If $q=3$, then $p=$?

Explain the steps you used to solve problem number \qquad .

